توزيع هاي آماري
براي مدل سازي رياضي مباحث مخابراتي مانند کانال، کدينگ، مدولاسيون، داده هاي دريافتي، نويز شبکه و ... با متغيير ها و نتايج غير قطعي درگير مي باشيم. در نتيجه دانشجويان مخابرات در درس فرآيند هاي تصادفي مباحث مربوط به توزيع احتمالي متنوعي را آموزش مي بينند.
در اين آموزش با مرور اجمالي به مباحث تئوري سعي شده تا شبيه سازي انواع مختلف توزيع ها نشان داده شود. هر توزيع آماري پارامتر هاي مخصوص خود را دارد و نرم افزار متلب مي توان آنها را مقدار دهي و تنظيم نمود.
توزيع نرمال
توزيع گوسي يا همان توزيع نرمال يکي از پرکاربردترين توزيع هاي مخابراتي مي باشد چرا که براي مدل سازي اکثر فرايند هاي تصادفي بکار مي رود. يکي از پر کاربردترين آنها نويز گوسي مي باشد که در اکثر مدل سازي هاي کانال هاي مخابراتي بکار مي رود.
در کل مجموعه اي از نمونه ها تصادفی با مقدار متوسط و واريانس محدود به توزيع نرمال ميل مي کند. شکل pdf (توزيع احتمال) اين حالت به صورت زنگوله ي متقارن مي باشد.
تابع توزيع تجمعي از رابطه زير محاسبه مي شود
از مولفه هاي اصلي اين نويز ميزان متوسط و واريانس آن مي باشد اثر واريانس و متوسط بر روي داده ها به صورت زير نمايش داده شده است.
clc;clear all;close all
% input x
x = -3:0.01:3;
% Normal probability density function
i = 1;
for mu= 0%-1:1
for sigma=1:0.5:2
pd = makedist('Normal',mu,sigma);
PDF = pdf(pd,x);
CDF = cdf (pd,x);
plot (x,PDF,'LineWidth',2);hold on
z(i)= max(PDF);
i = i +1;
end
end
برنامه براي دو حالت اجرا شده است تا اثر واريانس و ميانگين مقايسه شود.
حالت اول تغييرات ميانگين : باعث شيفت داده ها و مقدار ماکزيمم تابع چگالي احتمال بر روي مقدار ميانگين واقع مي شود.
حالت دوم تغييرات واريانس: باعث شيفت پخش شدگي نمودار حول ميانگين مي شود .
نتايج تابع توزيع تجمعي در تمامي توزيع ها به صورت صعودي زيز مي باشد:
توزيع رايلي
يکي از توزيع هاي بسيار پر کاربردي در مدل سازي کانال هاي مخابرات سيار توزيع رايلي مي باشد. اين توزيع حالت خاصي از توزيع هاي ويبل weibull مي باشد. رابطه اين توزيع به صورت زير مي باشد :
پارامتر عمده توزيع رايلي سيگما مي باشد که با افزايش آن منجر به کشيدگي توزيع رايلي مي شود. اين توزيع فقط براي مقادير مثبت جواب دارد.
کاربرد این توزیع در محاسبات، پوش سیگنال در یافتی در کانال مخابراتی در حالتی که دید مستقیم بین گیرنده و فرستنده وجود ندارد می باشد.
x = 0:0.01:6;
for sigma = 1:0.5: 2
pd = makedist('Rayleigh',sigma );
PDF = pdf(pd,x);
plot (x,PDF,'LineWidth',2);hold on
z(i)= max(PDF);
i = i +1;
end
نتايج توزيع احتمال رايلي به صورت زير مي باشد:
توزيع رايسين
از توزيع رايسين نيز براي مدل سازي کانال هاي مخابراتي سيار استفاده مي شود. تفاوت آن با توزيع رايلي در وجود line of sight بین گیرنده و فرستنده مي باشد. بنابراین پوش سیگنال دریافتی از این توزیع پیروی می کند.
رابطه اين توزيع به صورت زير مي باشد:
براي توزيع رايسين نيز تنها مقادير مثبت پشتيباني مي شود. همانطور که مشاهده مي شود اگر در رابطه بالا به جاي v مقدار صفر بذاريم رابطه رايلي را خواهيم داشت.
x = 0:0.01:6;
for v = 0:2
for sigma= 1%1:0.5: 2
pd = makedist('Rician',v, sigma );
PDF = pdf(pd,x);
plot (x,PDF,'LineWidth',2);hold on
z(i)= max(PDF);
i = i +1;
end
end
شکل زير ناشي از تغييرات v براي مقدار سيگماي يک مي باشد .
ساير تابع توزيع احتمال را نيز مي توان با دستور مشابه مشاهده کرد جدول زير امکانات نرم افزار متلب در شبيه سازي توزيع احتمال را نشان مي دهد.
Distribution Name | Description | Distribution Object |
---|---|---|
'Beta' | Beta distribution | BetaDistribution |
'Binomial' | Binomial distribution | BinomialDistribution |
'BirnbaumSaunders' | Birnbaum-Saunders distribution | BirnbaumSaundersDistribution |
'Burr' | Burr distribution | BurrDistribution |
'Exponential' | Exponential distribution | ExponentialDistribution |
'ExtremeValue' | Extreme Value distribution | ExtremeValueDistribution |
'Gamma' | Gamma distribution | GammaDistribution |
'GeneralizedExtremeValue' | Generalized Extreme Value distribution | GeneralizedExtremeValueDistribution |
'GeneralizedPareto' | Generalized Pareto distribution | GeneralizedParetoDistribution |
'HalfNormal' | Half-normal distribution | HalfNormalDistribution |
'InverseGaussian' | Inverse Gaussian distribution | InverseGaussianDistribution |
'Kernel' | Kernel distribution | KernelDistribution |
'Logistic' | Logistic distribution | LogisticDistribution |
'Loglogistic' | Loglogistic distribution | LoglogisticDistribution |
'Lognormal' | Lognormal distribution | LognormalDistribution |
'Nakagami' | Nakagami distribution | NakagamiDistribution |
'NegativeBinomial' | Negative Binomial distribution | NegativeBinomialDistribution |
'Normal' | Normal distribution | NormalDistribution |
'Poisson' | Poisson distribution | PoissonDistribution |
'Rayleigh' | Rayleigh distribution | RayleighDistribution |
'Rician' | Rician distribution | RicianDistribution |
'Stable' | Stable distribution | StableDistribution |
'tLocationScale' | t Location-Scale distribution | tLocationScaleDistribution |
'Weibull' | Weibull distribution | WeibullDistribution |